Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Heart Vessels ; 35(10): 1349-1359, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1451965

ABSTRACT

Fractional flow reserve (FFR) assessed during adenosine-induced maximal hyperemia has emerged as a useful tool for the guidance of percutaneous coronary interventions (PCI). However, interindividual variability in the response to adenosine has been claimed as a major limitation to the use of adenosine for the measurement of FFR, carrying the risk of underestimating the severity of coronary stenoses, with potential negative prognostic consequences. Genetic variants of the adenosine receptor A2a (ADORA2A gene), located in the coronary circulation, have been involved in the modulation of the hyperemic response to adenosine. However, no study has so far evaluated the impact of the single nucleotide polymorphism rs5751876 of ADORA2A on the measurement of FFR in patients undergoing percutaneous coronary intervention that was, therefore, the aim of our study. We included patients undergoing coronary angiography and FFR assessment for intermediate (40-70%) coronary lesions. FFR measurement was performed by pressure-recording guidewire (Prime Wire, Volcano), after induction of hyperemia with intracoronary boli of adenosine (from 60 to 1440 µg, with dose doubling at each step). Restriction fragment length polymorphism (RFLP) analysis was performed to assess the presence of rs5751876 C>T polymorphism of ADORA2a receptor. We included 204 patients undergoing FFR measurement of 231 coronary lesions. A total of 134 patients carried the polymorphism (T allele), of whom 41 (30.6%) in homozygosis (T/T).Main clinical and angiographic features did not differ according to ADORA2A genotype. The rs5751876 C>T polymorphism did not affect mean FFR values (p = 0.91), the percentage of positive FFR (p = 0.54) and the duration of maximal hyperemia. However, the time to recovery to baseline FFR values was more prolonged among the T-allele carriers as compared to wild-type patients (p = 0.04). Based on these results, in patients with intermediate coronary stenoses undergoing FFR assessment with adenosine, the polymorphism rs5751876 of ADORA2A does not affect the peak hyperemic response to adenosine and the results of FFR. However, a more prolonged effect of adenosine was observed in T-carriers.


Subject(s)
Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Fractional Flow Reserve, Myocardial/genetics , Polymorphism, Single Nucleotide , Receptor, Adenosine A2A/genetics , Adenosine/administration & dosage , Aged , Cardiac Catheterization , Coronary Angiography , Coronary Artery Disease/diagnosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Coronary Stenosis/therapy , Female , Humans , Hyperemia/physiopathology , Male , Middle Aged , Percutaneous Coronary Intervention , Phenotype , Predictive Value of Tests , Severity of Illness Index , Vasodilator Agents/administration & dosage
2.
PLoS One ; 15(10): e0239692, 2020.
Article in English | MEDLINE | ID: covidwho-840912

ABSTRACT

BACKGROUND: SARS-Cov2 infection may trigger lung inflammation and acute-respiratory-distress-syndrome (ARDS) that requires active ventilation and may have fatal outcome. Considering the severity of the disease and the lack of active treatments, 14 patients with Covid-19 and severe lung inflammation received inhaled adenosine in the attempt to therapeutically compensate for the oxygen-related loss of the endogenous adenosine→A2A adenosine receptor (A2AR)-mediated mitigation of the lung-destructing inflammatory damage. This off label-treatment was based on preclinical studies in mice with LPS-induced ARDS, where inhaled adenosine/A2AR agonists protected oxygenated lungs from the deadly inflammatory damage. The treatment was allowed, considering that adenosine has several clinical applications. PATIENTS AND TREATMENT: Fourteen consecutively enrolled patients with Covid19-related interstitial pneumonitis and PaO2/FiO2 ratio<300 received off-label-treatment with 9 mg inhaled adenosine every 12 hours in the first 24 hours and subsequently, every 24 days for the next 4 days. Fifty-two patients with analogue features and hospitalized between February and April 2020, who did not receive adenosine, were considered as a historical control group. Patients monitoring also included hemodynamic/hematochemical studies, CTscans, and SARS-CoV2-tests. RESULTS: The treatment was well tolerated with no hemodynamic change and one case of moderate bronchospasm. A significant increase (> 30%) in the PaO2/FiO2-ratio was reported in 13 out of 14 patients treated with adenosine compared with that observed in 7 out of52 patients in the control within 15 days. Additionally, we recorded a mean PaO2/FiO2-ratio increase (215 ± 45 vs. 464 ± 136, P = 0.0002) in patients receiving adenosine and no change in the control group (210±75 vs. 250±85 at 120 hours, P>0.05). A radiological response was demonstrated in 7 patients who received adenosine, while SARS-CoV-2 RNA load rapidly decreased in 13 cases within 7 days while no changes were recorded in the control group within 15 days. There was one Covid-19 related death in the experimental group and 11in the control group. CONCLUSION: Our short-term analysis suggests the overall safety and beneficial therapeutic effect of inhaled adenosine in patients with Covid-19-inflammatory lung disease suggesting further investigation in controlled clinical trials.


Subject(s)
Adenosine/adverse effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine/administration & dosage , Administration, Inhalation , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Female , Hospitalization , Humans , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2
3.
Sci Adv ; 6(23): eaaz5466, 2020 06.
Article in English | MEDLINE | ID: covidwho-602279

ABSTRACT

Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.


Subject(s)
Drug Delivery Systems/methods , Endotoxemia/drug therapy , Nanoparticles/chemistry , Squalene/chemistry , Systemic Inflammatory Response Syndrome/drug therapy , Adenosine/administration & dosage , Adenosine/chemistry , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Endotoxemia/chemically induced , Female , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Squalene/administration & dosage , Systemic Inflammatory Response Syndrome/chemically induced , Treatment Outcome , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL